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Effect of self heating on the torque vs. equivalent

tensile strain plot in high temperature torsion

of visco-plastic material
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In hot forming as simulated by the torsion test, a temperature rise due to self heating is
simulated within a FEM approach. The numerical results allow for a “natural” explanation
of the maximum experimentally observed for the torque vs. equivalent tensile strain plot.
There is no longer any need for assumptions of microstructurally conditioned strain
softening during the test. With increasing cumulated strain (time) the radial temperature
gradient in a cross section of the useful centre part of the test specimen is shown to change
in sign; in the beginning the temperature is highest at the surface and at the end the
temperature maximum is at the centre. C© 2001 Kluwer Academic Publishers

1. Introduction
A coherent model of the thermo-mechanical behaviour
of materials is a basic requirement for realistic simula-
tion of industrial hot forming operations.

The establishment of such a model generally requires
the definition of various constitutive functions relat-
ing system variables like stress, strain and strain rate.
In practice one postulates an à priory constitutive law
depending on the material parameters. The results of
bench marking experiments then allow for identifica-
tion of these material specific parameters.

This is done for the torsion test, a well established
method of studying solids heavily strained at high tem-
perature. In particular, this test allows laboratory sim-
ulation under conditions of stress, strain and strain rate
close to industrial practise. Torque (�), number of rev-
olutions (N ) and the instantaneous rotational speed
(dN /dt) are the characteristic experimentally accessible
parameters of this mechanical test (where only one end
of the generally cylindrical specimen is rotated while
the second one is maintained in a fixed grip).

In order to arrive at the constitutive laws one proceeds
the following way: according to an approach due to
Fields and Backofen, further developed by Rossard [1]
the equivalent stress (σeq) at the surface of the specimen
is determined. The parameters of the constitutive law
are identified by means of the experimental equivalent
stress σeq.

At high strain rates and high operation temperatures
the � vs. N “torsion plots” of various steels have a
local maximum (Fig. 1). Most frequently the decrease
in measured torque is attributed to strain softening of
the material. Indeed, when assuming isothermal test
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conditions, the decrease in � implies a drop of σeq, sug-
gesting a rearrangement of the material microstructure.
As a logical consequence the constitutive law then be-
comes complicated in order to account for these struc-
tural modifications in the course of strain history.

Various of our torsion tests have evidenced a con-
siderable self heating effect at the specimen surface.
Therefore we have decided to evaluate thermal effects
on the experimentally determined torsion plot. The ap-
proach chosen is numerical modelling of hot torsion of
a visco plastic material. We then describe the material
behaviour by a Norton-Hoff-type law without explic-
itly accounting for strain softening due to microstruc-
ture modifications. This is done intentionally in order
to specifically reveal the effect of self heating on the
shape of the torsion plot.

Figure 1 Example of an experimental hot torsion curve: torque vs. num-
ber of revolutions.
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2. System equations and numerical
modelling

The cylindrical test specimen is supposed to be con-
tinuous, homogeneous, and isotropic. The deformation
process is assumed to be governed by general thermo-
mechanical equations

2.1. Momentum conservation

Div� + �f = ρ �a (1)

With �a being the acceleration vector, �f the density of
volume forces, ρ the mass density and � the Cauchy
tensor. In the following the influence of �a and �f are
neglected.

2.2. Energy conservation and equation
of thermal transfer

The energy conservation law is formulated in the usual
way

ρ
D

Dt
e = � : D + r − Div �q

This is a relation between the material derivative of
the specific internal energy (e), the density of internal
energy generated at a distance (r) the heat flow vector
( �q), which represents the thermal conduction exchange
and the stress power � : D(�u):
D(�u) is the of strain rate tensor associated to the velocity
field �u.

Considering that the material under investigation is
isotropic, the Fourier law leads to �q = −λ Grad (T )
where λ is the thermal conductivity of the material and
T the absolute temperature. If we assume de-coupled
thermal and mechanical energy dissipation the equation
of heat transfer of our rigid visco-plastic specimen reads

ρCp
D

Dt
T = −Div (λ Grad (T )) − Q (2)

Even though the specific heat Cp is strictly speaking a
function of temperature, we assume it to be constant in
our applications. Q is the amount of mechanical power
dissipated per unit volume.

We can write explicitly Q = � : D(�u) − A · α̇ where
α̇ is the material derivative of an internal scalar variable
related to the strain history and A is the corresponding
thermodynamic driving force. The expression A · α̇ is a

measure of the energy absorbed in microstructure ma-
terial transformation. Most authors assume this energy
to represent only a small fraction (roughly 10%) of the
internal power dissipation. This leads to Q = f � : D(�u)
where the coefficient f obeys 0.9 < f < 1. In our appli-
cation we will assume that all of the mechanical energy
is dissipated as heat.

2.3. Constitutive material law
For hot forming operations one commonly supposes the
material to behave essentially like a fluid (rigid visco-
plastic model). The response of the material is often
described by a law relating the Cauchy stress deviator to
the strain rate. We shall adopt one of the most frequently
applied models of the classical Norton-Hoff type.

S = 2K
(√

3ε̇eq
)m−1

D(�u) (3)

With ε̇eq =
√

2
3 D(�u) : D(�u) being the equivalent tensile

strain rate (generalised strain rate). The material spe-
cific parameter m represents the strain rate sensitiv-
ity of stress. The parameter K is related to the con-
sistency of the material. It depends on temperature
and equivalent plastic tensile strain (ε̄eq). We postu-
late K = K0 exp(β/T )ε̄n

eq where K0 is a material con-
stant, β the ratio of thermal activation energy (Q) by
the Boltzmann constant (R). In order to account for
the relation between K and ε̄eq the system equation is
completed by the expression

Dε̄eq

Dt
= ε̇eq (4)

2.4. Solution strategy
With such a definition of the thermo-mechanical situa-
tion, the boundary conditions of Equations 1 and 2 have
to be specified. In addition, it is generally admitted that
plastic flow is incompressible. The velocity field which
follows when solving Equation 1 must satisfy the con-
straint: tr (D(�u)) = 0 (div �u = 0).

For the numerical treatment of the problem we adopt
the strategy proposed by Zienkiewicz [2]. Its implemen-
tation is fairly simple. This method has already been
applied successfully to forming operations by several
authors (e.g. Kobayashi [3], Cormeau et al. [4]). It can
be described by the following flowchart:
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Within the context of this solution strategy the equa-
tions have to be re-written in a way suited for numerical
approximation by the finite element method. We must
consider the weak form of the problem already prac-
tised by various authors (cf. Zienkiewicz [2], Glowinski
[5], Fortin and Glowinski [6]).

3. Results
The following analysis deals with cylindrical speci-
mens of circular cross section and constant length.
The axial symmetry allows for adoption of a two di-
mensional approach with cylindrical co-ordinates. The
boundary conditions of Equation 2 specified in Fig. 2
all have the following form:

λGrad(T ) · �n = −h(T )(T − Tα)

On the lateral surface this corresponds to heat ex-
change with the environment via radiadion and/or
convection. The transfer function is h(T ) = (ha + σrεr

(T + Ta)(T 2 + T 2
a )) where ha , σr , and εr (considered to

be constants) are respectively the coefficients of con-
vective exchange, the Stephan Boltzmann constant and
the emissivity of the surface. The temperature of the
environment, Ta , is also considered to be maintained
constant during the test.

Heat exchange at the grips by conduction is consid-
ered to be described by a flat contact with a constant
coefficient h(T ) = hc. It is well understood that this ap-
proach is an approximation only. Strictly speaking all of
these “exchange coefficients” depend on temperature,
specimen surface topography and nature.

3.1. Validation of the simulation code
The solution strategy described above has allowed de-
coupling of the thermal and mechanical aspects of the
problem. The validation of the simulation code will be
done by comparing the numerical and analytical solu-
tions of the extreme situations; purely mechanical and
purely thermal problems.

Figure 2 Torsion test specimen: boundary conditions of Equations 1 and 2.

3.1.1. The purely mechanical situation
The purely mechanical situation corresponds to con-
ventional isothermal test conditions of a cylindrical
specimen with circular cross-section. It is sufficient
to consider the useful centre part of the specimen
only. The torque is computed by Zienkiewicz’s strat-
egy of nodal stress extrapolation [7]. The analyti-
cally computed torque is described by the expression
� = 2π

3+m+n K0(
√

3)m exp(β/T )ε̄n
R ε̇m

R R(3+m+n) where R
is the radius of the cylindrical test specimen, ε̄R the
equivalent plastic strain and ε̇R the equivalent plastic
strain rate at the surface of the useful centre part of the
specimen.

The numerical and the analytical results for the tor-
sion plot, � vs. N , are indistinguishable.

3.1.2. The purely thermal situation
In order to validate the purely thermal aspect of the
code the analytical and numerical solutions have been
compared for the following model situation of the tem-
perature gradient along the radius of an infinite cylinder
immersed from the very start into a heat bath of con-
stant temperature Ta . Thus all of the cross sections along
the specimen are equivalent. We suppose the heat ex-
change across the surface to be governed by convection
only. For the numerical simulation we suppose no heat
exchange via the the cross sections corresponding to
the ends of the useful centre part. As to the analytical
solution, it can be easily obtained by a finite Hankel
transform [8]

T (r, t) = Ta + 2(Ti − Ta)

R

∑
i

ξi e−χξ 2
i t J0(ξi r )J1(ξi R)(

h2 + ξ 2
i

)
[J0(ξi R)]2

The sum is over all the positive roots of the transcen-
dental equation h J0(ξ R) = ξ J1(ξ R).

We define h = hc/λ and χ = λ
ρCp

. J0 and J1 are re-
spectively the zero and first order Bessel functions
of the first kind. Ti is the initial surface temperature
of the test specimen. Here again excellent agreement
has been achieved between the analytical and numeri-
cal solutions.
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Figure 3 Start up rotation of the specimen.

3.2. Analysis of thermo-viscoplastic torsion
We are essentially interested in the influence of the ther-
mal effect for specific steels on the � vs. N plot at high
temperature. The results correspond to test conditions
with equivalent strain rates of 10 s−1. The results are
presented as a function of the number of revolutions for
the effective torque � (Fig. 6) as well as the absolute
temperature T along the cylinder radius R (Fig. 7) of a
cross section in the useful centre part.

The numerical results plotted out in the figures all
correspond to the following values (in ISO units) as-
sumed for the system constants.

K0 = 1.06 10+6; β = 6000; n = 0; m = 0.5;

ρ = 7.8 10+3; Cp = 750; = 26;

ha = 20 10+3; hc = 12 10+3

In practise the nominal rotational speed is only attained
with a small delay after the start of the experiment.
This situation is schematically shown in Fig. 3. In our
case the rise time ts is always considered to be 0.3 s,
corresponding to the execution of as much as 3.5 torsion
cycles.

Let us first consider the case of specimens as defined
in Fig. 1. We assume that inductive heating initially pro-
duces a uniform temperature distribution in the useful
centre part of the specimen. The extremities of the speci-
mens can either be assumed to have the same tempera-
ture as the centre part or to be close to room temperature
as verified in our experiments.

When considering the system as thermally insulated
(closed system) the results of our numerical simula-
tions yield relative variations of temperature, equiva-
lent stress and torque which are indistinguishable in
the useful centre part of the specimen.

Fig. 4 shows these numerical results during a typi-
cal torsion test for the local temperature at 4 reference
points (R/4, R/2, 3R/4, R), along the radius of cross sec-
tion in the useful centre part. After 20 cycles the sur-
face temperature rise is roughly 200◦C. As expected,
the higher the local strain rate the more important is the
corresponding temperature rise. These numerical sim-
ulation results prove that the torsion test cannot be con-
sidered as isothermal and raise the question concerning
the validity of the “zero radial temperature gradient”
assumption retained within the Fields and Backoffen
approach.

Owing to the variation of temperature during the tor-
sion test the equivalent stress shows a clear maximum
(Fig. 5). The position of this maximum shifts in time
(to higher cycle numbers) as we approach the axis of

Figure 4 Temperature vs. number of revolutions at 4 reference points
for an insulated system.

Figure 5 Equivalent plastic tensile stress vs. number of revolutions at 4
reference points for an insulated system.

symmetry of the specimen (R → R/4). When compar-
ing with Fig. 3 it is also evident that the maximum in
equivalent stress, σeq, is attained already during the rise
time before stabilisation of the rotational speed. The
� vs. N plot (Fig. 6) also shows a maximum which
is perfectly related to that of σeq and situated at the
same position in time computed for “point R”. This
is certainly due to the particular choice of our system
parameters as the maximum of σeq is expected to be
slightly delayed compared to that at the surface.

Owing to the absence of a thermal gradient along the
specimen axis, the simulation can be simplified. Thus,
if thermal exchange across the surface is taken into
account, it is sufficient to only study the useful centre
part of the specimen. Fig. 7 shows the corresponding
temperature evolution across a cross section of the
useful centre part. When comparing with the preceding
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Figure 6 Torque vs. number of revolutions for an insulated system.

Figure 7 Temperature vs. number of revolutions at 4 reference points
when lateral heat exchange is taken into account (the equivalent tensile
strain rate is 10 s−1).

Figure 8 Torque vs. number of revolutions (insulated system, adiabatic
system, lateral heat exchange).

situations (cf.: Fig. 4) the temperature “profile” is en-
tirely modified. In the course of the test the hottest point
progressively shifts from the surface to the centre of the
test specimen. As is evident in Fig. 8, this modification
of the radial temperature gradient also strongly influ-
ences the evolution of the effective torque during the
torsion experiment. Notice that the maximum in torque
is attained later than in the case of a closed system which
approaches the behaviour for an adiabatic system.

4. Conclusion
We have presented a numerical FEM approach for hot
forming as experimentally simulated by the torsion test
of cylindrical specimens.

This has been done by taking into account energy dis-
sipation via thermal effects and assuming rigid visco-
plastic material behaviour.

Perfect agreement is obtained when validating the
numerical model by comparing it to analytical results
in the extreme case of purely mechanical and purely
thermal mechanisms. The model is thus considered as
validated in the mixed situation of joint thermal and
mechanical situations.

We show that the experimentally well established
maximum in the first part of the torque vs. equivalent
tensile plastic strain plot can then be readily accounted
for, without any sophisticated strain softening mechan-
isms due to microstructural modifications.

The torque maximum can be explained by self-
heating of the specimen which continuously increases
as the test continues. Thus the observed softening is
mainly due to self-heating.

The specimen temperature at a characteristic cross
section in the “useful” centre part of the specimen
shows a clear gradient. In the beginning of the test the
surface temperature is highest. As the experiment car-
ries on (20 turns at a nominal equivalent tensile strain
rate of 10 s−1) this temperature gradient is inverted
proving the influence of heat exchange with surround-
ing medium.

In conclusion, the general assumptions of isothermal
experimental conditions, strain softening and zero tem-
perature gradient along the radius of a representative
specimen cross section appear to be unjustified.
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